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To describe turbulence as coherent-structure chaos [i], one needs to establish the 
structure types. Some information has accumulated on structures whose scales s are of the 
order of or greater than the basic turbulence scale L. There are models in which the moving 
elements are vortex rings and filaments or shear layers [i, 2]. 

Very scanty experimental evidence is available on the characteristic structural elements 
on small scales s << L. We merely know that small-scale motions are highly variable and 
localized in regions with small relative volumes. One assumes that the small-scale motions 
may have some organization. There is a combination of marked nonlinearity in the motion 
within a small volume and the extracting and orienting action of the large-scale velocity, 
which can lead to considerable ordering in the motion in that volume. Such ordering in 
particular is likely for motions from the energy-dissipation range, in which there is relaxa- 
tion in the motions generated by the inertial range. 

Here we show that the turbulence parameters in the energy-dissipation range are deter- 
mined by quasi-one-dimensional packets of hydrodynamic harmonics. Equations are derived for 
the packet evolution over time and the characteristic features have been established for the 
solutions that are important to understanding the nonlinear dynamics of the pulsations in the 
dissipative scale range. 

Turbulence Parameters in the Energy-Dissipation Range. The local structure in developed 
turbulence is determined by length scales: the scale of the treatment L and the Kolmogorov 
dissipation scale n. In the inertial scale range N<<I<<L , there is nonlinear energy 
transfer from the large scales to the small ones, while the viscosity is not important. Con- 
versely, for s < N, the viscosity is important, since energy dissipation occurs in that range. 
A special study is needed to establish the role of nonlinearity for s < D. 

The assumption that the dissipating harmonics have weak nonlinearity implies exponential 
decay in the turbulence spectrum for wave numbers k >> D -I [2]: 

E ( k )  N exp [--(~k)21. (1 )  

A more  d e t a i l e d  t h e o r e t i c a l  a n a l y s i s  shows t h a t  t h e r e  may be r e a s o n s  Why E(k )  d e c r e a s e s  more 
s l o w l y  t h a n  in  ( 1 ) .  The f i r s t  i s  t h a t  t h e r e  a r e  f u n c t i o n s  in  B, wh ich  a r e  due t o  f l u c t u a -  
t i o n s  in  t h e  e n e r g y  i n f l u x  f rom t h e  i n e r t i a l  r a n g e .  A v e r a g i n g  E o v e r  t h e  n f l u c t u a t i o n s  
can l e a d  t o  E (k )  d e c r e a s i n g  more s l o w l y  t h a n  in  (1 )  [3 ,  4 ] .  A d i s c u s s i o n  o f  t h e  s m a l l - s c a l e  
s t r u c t u r e  s t a t i s t i c s  l i e s  o u t s i d e  t h e  s c o p e  o f  t h e  p r e s e n t  p a p e r .  A n o t h e r  f a c t o r  i s  t h e  
marked  n o n l i n e a r i t y  in  t h e  d i s s i p a t i n g  h a r m o n i c s ,  wh ich  t h e n  i n c o r p o r a t e d  in  f i e l d - t h e o r y  
me thods  g i v e s  t h e  t u r b u l e n c e  s p e c t r u m  f o r  ~k >> 1 [ 5 - 7 ] :  

E ( k )  ~ exp (--~k). (2 )  

The (2) asymptote is provided by simple dynamic models: the Langevin nonlinear equation, 
Burgers equation, and the Lorentz model [4]. Here N is related to the distance of the singu- 
larity in the fluctuating function closest to the real axis. If the fluctuations are bounded, 
the (2) asymptote persists on averaging over the fluctuations. The application of that 
method to hydrodynamic turbulence is limited by the multiple dimensions. 

We show that the pulsation dynamics for nk >> 1 will be quasi-one-dimensional. The 
Navier-Stokes equations for an incompressible liquid in the Fourier representation in terms 
of the spatial coordinates are 
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(O/Ot + vk 2) u~ (k ,  t) = - -  i/2Pijz (k)  J dSquj (q, t) u l  (k  - -  q, t); 

k u ( k ,  t) = 0 

(Pijt(k) = kjAiz(k) + k z & i j ( k ) ,  A~i(k  ) = 6~, - -  k~kflk~). 

(3) 

(4) 

One naturally assumes that the characteristic harmonic amplitude for Dk >> 1 is ex- 
ponentially dependent on the wave number 

u ( k )  .-,  exp [--(~k)'] (5) 

(y > 0). We substituted (5) on the right in (3), which shows that for y < i, the main con- 
tribution comes from the region where q<< Ik--ql Nk or Ik--q]<<q ~k , so there is direct 

energy transfer from the harmonics with scale q to the u(k) ones. The (3) equations are 
linearized and give the (I) spectrum [2], which does not agree with the assumption ~ < i. 
For y > i, the most important contribution is from the q ~ [k--q[~k/2 range. The right-hand 

side in (3) is of the order of Pijz(k)uZ(k/2)k 3 ~ e x p  [ - - ( q k ) ~ 2 1 - v ] .  In the limit ~k + ~, the 

right-hand and left-hand parts of the equation coincide as to order of magnitude only for 
= i. Then the largest contribution to the integral comes from the region in which the 

wave vectors q and k are almost collinear. The contribution from exactly collinear q and k 
becomes zero because of the Pijs factor, while that from noncollinear q and k is exponen- 
tially small with respect to the transverse deviations. The phases of the u(k) should be 
correlated. The contribution from the incoherent component on the right in (3) is small 
because of the fast oscillations. 

We conclude that the turbulence parameters in the extreme shortwave region Bk >> 1 are 
determined by coherent nonlinear harmonic packets having almost collinear wave vectors. We 
now derive approximate one-dimensional equations for such a packet, which follow from (3) 
and (4) after expansion in terms of the small noncollinearity. 

Dynamic Equations for a Harmonic Packet. The complete information on a packet having 
almost collinear wave vectors k is contained in the set of linear moments for u(k): 

0 ~" �9 ( p ) ' =  ~ • h . " , n  x q •  2 . . .  ( p e ' +  ~) d2• 
~ o  

( 6 )  

in which n = 0, I, 2, ...; and e is unit vector along the packet axis, while m is the com- 
ponent of the wave vector perpendicular to that axis, and p is the longitudinal projection 
of the wave vector. The integration is in the o plane perpendicular to the axis. 

Here we consider the zeroth and first moments, which provide the main information on 
the packet structure. The higher-order moments describe the fine structure and govern the 
contributions to the effective viscosity and interaction unimportant on the dissipative 
scale. 

We get the dynamic equations for O i and 0h from (3) and (4) after integrating them in 
the a plane with weighting factors i and • One can expand Pijz in the integral as a 
series in the deviations m=k--pe: 

Piiz(k) = P i ~ t ( p e )  + OPijz(k)/Ok= Ix=o• + . . .  ( 7 )  

= pPilz(e) + • - -  e~e l] + • - -  eiej] - - 2 x i e f l  + ... 

i 
Then (7) enables one to replace (3) and (4) by a system for the linear moments 0il...i n" 

The (4) incompressibility equations give a set of kinematic relations: 

pe~O~...~ + 0j, h . . . . .  ~ = 0 (n = 0, t,  2 . . . .  ) .  ( 8 )  

If we neglect the moments above the first order, then 

pejOJ(p) + 0j(p) = 0, ej0{ = o. 

Analogous integration of (3) in the o plane gives dynamic equations for 0 i, Oim: 

(9) 
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O0 i (p)/Ot + vp~O ~ (p) = --  ip/2Pij~ (e) f dqOj (q) Oz (p -- q) 

- -  i I dq {[0 i (q) 0 z (p - -  q) -6 0 j (q) 0~ (p - -  q)] [Ai; (e) - -  eiet] 

- -  20i(q) 0 z ( p -  q) ejel} + . . . ;  

00~ (p)/Ot + vp20k (p) = - -  ip/2 ] dq [Ok (q) O' (p - -  q) 

+ 0 j (q) O~ (p - -  q)] [ejAiz (e) + elA 0 (e)]. 

(10) 

(11) 

One can reduce (i0) and (ii) to a system of differential equations in one-dimensional 
space if one performs an inverse Fourier transformation with respect to the longitudinal 
wave number. If we take the x axis as the packet axis and introduce 

[ (x) = ej ~ exp (ipx) 0 (p) dp = ux (x, O, 0); (12) 

hi (x) = Aim (e) y exp (ipx) 0 ~ (p) dp = Aim ie) u~ (x, O, 0); (13) 

f Ou l 
gi,~ (x) = - -  iAiz (e) exp (ipx) O~ (p) dp = A i l  (e) Ar~n (e) ~ (x, 0, 0), (14)  

( 9 ) - ( 1 1 )  become 

gz  = o]/Ox; (15)  

o//ot + ]o//Ox = vo~/10x~ (16)  

Og~m/Ot + O(]g~m)/Ox = vO2g~ra/Ox2; 

Ohi/Ot -6 a(/hi)/Ox = ~r ~ -6 guh~ -5 gjih~. 

(17) 

(is) 

Moment Solution Features. The complete solution to (16)-(18) can be found by solving 
(16), (17), and (18) sequentially. We first determine the (12) longitudinal velocity, which 
satisfies the Burgers equation (16). For a known f, (17) is linear in the gim tensor. If 
the solution to that equation has been derived, it remains to solve the linear equation (18). 

The only nonlinear equation in the system, the Burgers equation, can be integrated 
analytically [8]. The solutions are characterized by a tendency to give rise to shock fronts. 
The positions and intensities of those fronts are determined by features in the analytic 
function f(x) in the plane of the complex variable x =$i +i~2 [4]. The singularity closest 
to the real axis defines the asymptote for the Fourier harmonics in the large wave number 
range. 

The gim tensor satisfies (17); the right-hand side describes the diffusion effect from 
the viscosity, while the O(/gim)/ Ox term describes the convective transport of gim by 

the field f. The gim solutions have a characteristic tendency for the moduli of the compo- 
nents to increase at points where 8f/3x is negative. An opposite tendency is for the narrow 
peaks to spread by diffusion because of the viscosity effect. 

From (15), the trace of the tensor gij is found by differentiating f with respect to x, 
so it remains to derive the trace-free component g~m = gim--6imgij/3 The symmetrical com- 

r 

ponent (g~m + gmi)/2 is the strain tensor, while the antisymmetric one is expressed in terms 
of the longitudinal vorticity (gim--gm~)/2= Aiz(e)Am~(e)el~j~ j. The (13) transverse velocity 

satisfies (18). The last two terms on the right in (18) give the convective influx of trans- 
verse momentum at the packet axis. 

We see from (16)-(18) that there are particular solutions in which any components of f, 
gim, and h i are identically zero. As the nonlinearity is important only for f ~ 0, the main 
interest attaches to the behavior of the longitudinal velocity f. That conclusion conflicts 
with the common assumption that the spectrum asymptote for Dk ~ ~ is determined by the 
stretching effect for the vortex lines, namely by the O(fgim)/Ox term on the left in (17). 

If accidently the region with considerable vorticity falls within the front for function f, 
the longitudinal vorticity is amplified. However, the above implies that this is a secondary 
effect from the viewpoint of calculating the sphctrum asymptote for qk + ~. 
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These equations apply if the Reynolds number Re for a packet is small. Formal applica- 
tion to packets with large Re leads to an inertial interval in the Burgers equation with 
spectrum k -2 , which differs from the Kolmogorov-Obukhov spectrum. One cannot use (16)-(18) 
for a packet with large Re because such a packet is unstable with respect to the generation 
of harmonics having large transverse wave-vector components, so it is rapidly destroyed. 
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